pixelflut-rgb-matrix-server/led-matrix.h

505 lines
20 KiB
C++

// -*- mode: c++; c-basic-offset: 2; indent-tabs-mode: nil; -*-
// Copyright (C) 2013 Henner Zeller <h.zeller@acm.org>
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation version 2.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://gnu.org/licenses/gpl-2.0.txt>
// Controlling 16x32 or 32x32 RGB matrixes via GPIO. It allows daisy chaining
// of a string of these, and also connecting a parallel string on newer
// Raspberry Pis with more GPIO pins available.
#ifndef RPI_RGBMATRIX_H
#define RPI_RGBMATRIX_H
#include <stdint.h>
#include <stddef.h>
#include <string>
#include <vector>
#include "canvas.h"
#include "thread.h"
#include "pixel-mapper.h"
namespace rgb_matrix {
class RGBMatrix;
class FrameCanvas; // Canvas for Double- and Multibuffering
struct RuntimeOptions;
// The RGB matrix provides the framebuffer and the facilities to constantly
// update the LED matrix.
//
// This implement the Canvas interface that represents the display with
// (led_cols * chained_displays)x(rows * parallel_displays) pixels.
//
// If can do multi-buffering using the CreateFrameCanvas() and SwapOnVSync()
// methods. This is useful for animations and to prevent tearing.
//
// If you arrange the panels in a different way in the physical space, write
// a CanvasTransformer that does coordinate remapping and which should be added
// to the transformers, like with UArrangementTransformer in demo-main.cc.
class RGBMatrix : public Canvas {
public:
// Options to initialize the RGBMatrix. Also see the main README.md for
// detailed descriptions of the command line flags.
struct Options {
Options(); // Creates a default option set.
// Validate the options and possibly output a message to string. If
// "err" is NULL, outputs validation problems to stderr.
// Returns 'true' if all options look good.
bool Validate(std::string *err) const;
// Name of the hardware mapping. Something like "regular" or "adafruit-hat"
const char *hardware_mapping;
// The "rows" are the number
// of rows supported by the display, so 32 or 16. Default: 32.
// Flag: --led-rows
int rows;
// The "cols" are the number of columns per panel. Typically something
// like 32, but also 64 is possible. Sometimes even 40.
// cols * chain_length is the total length of the display, so you can
// represent a 64 wide display as cols=32, chain=2 or cols=64, chain=1;
// same thing, but more convenient to think of.
// Flag: --led-cols
int cols;
// The chain_length is the number of displays daisy-chained together
// (output of one connected to input of next). Default: 1
// Flag: --led-chain
int chain_length;
// The number of parallel chains connected to the Pi; in old Pis with 26
// GPIO pins, that is 1, in newer Pis with 40 interfaces pins, that can
// also be 2 or 3. The effective number of pixels in vertical direction is
// then thus rows * parallel. Default: 1
// Flag: --led-parallel
int parallel;
// Set PWM bits used for output. Default is 11, but if you only deal with
// limited comic-colors, 1 might be sufficient. Lower require less CPU and
// increases refresh-rate.
// Flag: --led-pwm-bits
int pwm_bits;
// Change the base time-unit for the on-time in the lowest
// significant bit in nanoseconds.
// Higher numbers provide better quality (more accurate color, less
// ghosting), but have a negative impact on the frame rate.
// Flag: --led-pwm-lsb-nanoseconds
int pwm_lsb_nanoseconds;
// The lower bits can be time-dithered for higher refresh rate.
// Flag: --led-pwm-dither-bits
int pwm_dither_bits;
// The initial brightness of the panel in percent. Valid range is 1..100
// Default: 100
// Flag: --led-brightness
int brightness;
// Scan mode: 0=progressive, 1=interlaced.
// Flag: --led-scan-mode
int scan_mode;
// Default row address type is 0, corresponding to direct setting of the
// row, while row address type 1 is used for panels that only have A/B,
// typically some 64x64 panels
int row_address_type; // Flag --led-row-addr-type
// Type of multiplexing. 0 = direct, 1 = stripe, 2 = checker,...
// Flag: --led-multiplexing
int multiplexing;
// Disable the PWM hardware subsystem to create pulses.
// Typically, you don't want to disable hardware pulsing, this is mostly
// for debugging and figuring out if there is interference with the
// sound system.
// This won't do anything if output enable is not connected to GPIO 18 in
// non-standard wirings.
bool disable_hardware_pulsing; // Flag: --led-hardware-pulse
// Show refresh rate on the terminal for debugging and tweaking purposes.
bool show_refresh_rate; // Flag: --led-show-refresh
// Some panels have inversed colors.
bool inverse_colors; // Flag: --led-inverse
// In case the internal sequence of mapping is not "RGB", this contains the
// real mapping. Some panels mix up these colors. String of length three
// which has to contain all characters R, G and B.
const char *led_rgb_sequence; // Flag: --led-rgb-sequence
// A string describing a sequence of pixel mappers that should be applied
// to this matrix. A semicolon-separated list of pixel-mappers with optional
// parameter.
const char *pixel_mapper_config; // Flag: --led-pixel-mapper
// Panel type. Typically an empty string or NULL, but some panels need
// a particular initialization sequence, so this is used for that.
// This can be e.g. "FM6126A" for that particular panel type.
const char *panel_type; // Flag: --led-panel-type
// Limit refresh rate of LED panel. This will help on a loaded system
// to keep a constant refresh rate. <= 0 for no limit.
int limit_refresh_rate_hz; // Flag: --led-limit-refresh
};
// Factory to create a matrix. Additional functionality includes dropping
// privileges and becoming a daemon.
// Returns NULL, if there was a problem (a message then is written to stderr).
static RGBMatrix *CreateFromOptions(const Options &options,
const RuntimeOptions &runtime_options);
// A factory that parses your main() commandline flags to read options
// meant to configure the the matrix and returns a freshly allocated matrix.
//
// Optionally, you can pass in option structs with a couple of defaults
// which are used unless overwritten on the command line.
// A matrix is created and returned; also the options structs are
// updated to reflect the values that were used and set on the command line.
//
// If you allow the user to start a daemon with --led-daemon, make sure to
// call this function before you have started any threads, so early on in
// main() (see RuntimeOptions documentation).
//
// Note, the permissions are dropped by default from 'root' to 'daemon', so
// if you are required to stay root after this, disable this option in
// the default RuntimeOptions (set drop_privileges = -1).
// Returns NULL, if there was a problem (a message then is written to stderr).
static RGBMatrix *CreateFromFlags(int *argc, char ***argv,
RGBMatrix::Options *default_options = NULL,
RuntimeOptions *default_runtime_opts = NULL,
bool remove_consumed_flags = true);
// Stop matrix, delete all resources.
virtual ~RGBMatrix();
// -- Canvas interface. These write to the active FrameCanvas
// (see documentation in canvas.h)
//
// Since this is updating the canvas that is currently displayed, this
// might result in tearing.
// Prefer using a FrameCanvas and do double-buffering, see section below.
virtual int width() const;
virtual int height() const;
virtual void SetPixel(int x, int y,
uint8_t red, uint8_t green, uint8_t blue);
virtual void Clear();
virtual void Fill(uint8_t red, uint8_t green, uint8_t blue);
// -- Double- and Multibuffering.
// Create a new buffer to be used for multi-buffering. The returned new
// Buffer implements a Canvas with the same size of thie RGBMatrix.
// You can use it to draw off-screen on it, then swap it with the active
// buffer using SwapOnVSync(). That would be classic double-buffering.
//
// You can also create as many FrameCanvas as you like and for instance use
// them to pre-fill scenes of an animation for fast playback later.
//
// The ownership of the created Canvases remains with the RGBMatrix, so you
// don't have to worry about deleting them (but you also don't want to create
// more than needed as this will fill up your memory as they are only deleted
// when the RGBMatrix is deleted).
FrameCanvas *CreateFrameCanvas();
// This method waits to the next VSync and swaps the active buffer with the
// supplied buffer. The formerly active buffer is returned.
//
// If you pass in NULL, the active buffer is returned, but it won't be
// replaced with NULL. You can use the NULL-behavior to just wait on
// VSync or to retrieve the initial buffer when preparing a multi-buffer
// animation.
//
// The optional "framerate_fraction" parameter allows to choose which
// multiple of the global frame-count to use. So it slows down your animation
// to an exact integer fraction of the refresh rate.
// Default is 1, so immediately next available frame.
// (Say you have 140Hz refresh rate, then a value of 5 would give you an
// 28Hz animation, nicely locked to the refresh-rate).
// If you combine this with Options::limit_refresh_rate_hz you can create
// time-correct animations.
FrameCanvas *SwapOnVSync(FrameCanvas *other, unsigned framerate_fraction = 1);
// -- Setting shape and behavior of matrix.
// Apply a pixel mapper. This is used to re-map pixels according to some
// scheme implemented by the PixelMapper. Does _not_ take ownership of the
// mapper. Mapper can be NULL, in which case nothing happens.
// Returns a boolean indicating if this was successful.
bool ApplyPixelMapper(const PixelMapper *mapper);
// Note, there used to be ApplyStaticTransformer(), which has been deprecated
// since 2018 and changed to a compile-time option, then finally removed
// in 2020. Use PixelMapper instead, which is simpler and more intuitive.
// Set PWM bits used for output. Default is 11, but if you only deal with
// limited comic-colors, 1 might be sufficient. Lower require less CPU and
// increases refresh-rate.
//
// Returns boolean to signify if value was within range.
//
// This sets the PWM bits for the current active FrameCanvas and future
// ones that are created with CreateFrameCanvas().
bool SetPWMBits(uint8_t value);
uint8_t pwmbits(); // return the pwm-bits of the currently active buffer.
// Map brightness of output linearly to input with CIE1931 profile.
void set_luminance_correct(bool on);
bool luminance_correct() const;
// Set brightness in percent for all created FrameCanvas. 1%..100%.
// This will only affect newly set pixels.
void SetBrightness(uint8_t brightness);
uint8_t brightness();
//-- GPIO interaction.
// This library uses the GPIO pins to drive the matrix; this is a safe way
// to request the 'remaining' bits to be used for user purposes.
// Request user readable GPIO bits.
// This function allows you to request pins you'd like to read with
// AwaitInputChange().
// Only bits that are not already in use for reading or wrtiting
// by the matrix are allowed.
// Input is a bitmap of all the GPIO bits you're interested in; returns all
// the bits that are actually available.
uint64_t RequestInputs(uint64_t all_interested_bits);
// This function will return whenever the GPIO input pins
// change (pins that are not already in use for output, that is) or the
// timeout is reached. You need to have reserved the inputs with
// matrix->RequestInputs(...) first (e.g.
// matrix->RequestInputs((1<<25)|(1<<24));
//
// A positive timeout waits the given amount of milliseconds for a change
// (e.g. a button-press) to occur; if there is no change, it will just
// return the last value.
// If you just want to know how the pins are right now, call with zero
// timeout.
// A negative number waits forever and will only return if there is a change.
//
// This function only samples between display refreshes so polling some
// input does not generate flicker and provide a convenient change interface.
//
// Returns the bitmap of all GPIO input pins.
uint64_t AwaitInputChange(int timeout_ms);
// Request user writable GPIO bits.
// This allows to request a bitmap of GPIO-bits to be used by the user for
// writing.
// Only bits that are not already in use for reading or wrtiting
// by the matrix are allowed.
// Returns the subset bits that are _actually_ available,
uint64_t RequestOutputs(uint64_t output_bits);
// Set the user-settable bits according to output bits.
void OutputGPIO(uint64_t output_bits);
// Legacy way to set gpio pins. We're not doing this anymore but need to
// be source-compatible with old calls of the form
// matrix->gpio()->RequestInputs(...)
//
// Don't use, use AwaitInputChange() directly.
RGBMatrix *gpio() __attribute__((deprecated)) { return this; }
//-- Rarely needed
// Start the refresh thread.
// This is only needed if you chose RuntimeOptions::daemon = -1 (see below),
// otherwise the refresh thread is already started.
bool StartRefresh();
private:
class Impl;
RGBMatrix(Impl *impl) : impl_(impl) {}
Impl *const impl_;
};
namespace internal {
class Framebuffer;
}
class FrameCanvas : public Canvas {
public:
// Set PWM bits used for this Frame.
// Simple comic-colors, 1 might be sufficient (111 RGB, i.e. 8 colors).
// Lower require less CPU.
// Returns boolean to signify if value was within range.
bool SetPWMBits(uint8_t value);
uint8_t pwmbits();
// Map brightness of output linearly to input with CIE1931 profile.
void set_luminance_correct(bool on);
bool luminance_correct() const;
void SetBrightness(uint8_t brightness);
uint8_t brightness();
//-- Serialize()/Deserialize() are fast ways to store and re-create a canvas.
// Provides a pointer to a buffer of the internal representation to
// be copied out for later Deserialize().
//
// Returns a "data" pointer and the data "len" in the given out-paramters;
// the content can be copied from there by the caller.
//
// Note, the content is not simply RGB, it is the opaque and platform
// specific representation which allows to make deserialization very fast.
// It is also bigger than just RGB; if you want to store it somewhere,
// using compression is a good idea.
void Serialize(const char **data, size_t *len) const;
// Load data previously stored with Serialize(). Needs to be restored into
// a FrameCanvas with exactly the same settings (rows, chain, transformer,...)
// as serialized.
// Returns 'false' if size is unexpected.
// This method should only be called if FrameCanvas is off-screen.
bool Deserialize(const char *data, size_t len);
// Copy content from other FrameCanvas owned by the same RGBMatrix.
void CopyFrom(const FrameCanvas &other);
// -- Canvas interface.
virtual int width() const;
virtual int height() const;
virtual void SetPixel(int x, int y,
uint8_t red, uint8_t green, uint8_t blue);
virtual void Clear();
virtual void Fill(uint8_t red, uint8_t green, uint8_t blue);
private:
friend class RGBMatrix;
FrameCanvas(internal::Framebuffer *frame) : frame_(frame){}
virtual ~FrameCanvas(); // Any FrameCanvas is owned by RGBMatrix.
internal::Framebuffer *framebuffer() { return frame_; }
internal::Framebuffer *const frame_;
};
// Runtime options to simplify doing common things for many programs such as
// dropping privileges and becoming a daemon.
struct RuntimeOptions {
RuntimeOptions();
int gpio_slowdown; // 0 = no slowdown. Flag: --led-slowdown-gpio
// ----------
// If the following options are set to disabled with -1, they are not
// even offered via the command line flags.
// ----------
// Thre are three possible values here
// -1 : don't leave choise of becoming daemon to the command line parsing.
// If set to -1, the --led-daemon option is not offered.
// 0 : do not becoma a daemon, run in forgreound (default value)
// 1 : become a daemon, run in background.
//
// If daemon is disabled (= -1), the user has to call
// RGBMatrix::StartRefresh() manually once the matrix is created, to leave
// the decision to become a daemon
// after the call (which requires that no threads have been started yet).
// In the other cases (off or on), the choice is already made, so the thread
// is conveniently already started for you.
int daemon; // -1 disabled. 0=off, 1=on. Flag: --led-daemon
// Drop privileges from 'root' to 'daemon' once the hardware is initialized.
// This is usually a good idea unless you need to stay on elevated privs.
int drop_privileges; // -1 disabled. 0=off, 1=on. flag: --led-drop-privs
// By default, the gpio is initialized for you, but if you run on a platform
// not the Raspberry Pi, this will fail. If you don't need to access GPIO
// e.g. you want to just create a stream output (see content-streamer.h),
// set this to false.
bool do_gpio_init;
};
// Convenience utility functions to read standard rgb-matrix flags and create
// a RGBMatrix. Commandline flags are something like --led-rows, --led-chain,
// --led-parallel. See output of PrintMatrixFlags() for all available options
// and detailed description in
// https://github.com/hzeller/rpi-rgb-led-matrix#changing-parameters-via-command-line-flags
//
// Example use:
/*
using rgb_matrix::RGBMatrix;
int main(int argc, char **argv) {
RGBMatrix::Options led_options;
rgb_matrix::RuntimeOptions runtime;
// Set defaults
led_options.chain_length = 3;
led_options.show_refresh_rate = true;
runtime.drop_privileges = 1;
if (!rgb_matrix::ParseOptionsFromFlags(&argc, &argv, &led_options, &runtime)) {
rgb_matrix::PrintMatrixFlags(stderr);
return 1;
}
// Do your own command line handling with the remaining flags.
while (getopt()) {...}
// Looks like we're ready to start
RGBMatrix *matrix = RGBMatrix::CreateFromOptions(led_options, runtime);
if (matrix == NULL) {
return 1;
}
// .. now use matrix
delete matrix; // Make sure to delete it in the end to switch off LEDs.
return 0;
}
*/
// This parses the flags from argv and updates the structs with the parsed-out
// values. Structs can be NULL if you are not interested in it.
//
// The recongized flags are removed from argv if "remove_consumed_flags" is
// true; this simplifies your command line processing for the remaining options.
//
// Returns 'true' on success, 'false' if there was flag parsing problem.
bool ParseOptionsFromFlags(int *argc, char ***argv,
RGBMatrix::Options *default_options,
RuntimeOptions *rt_options,
bool remove_consumed_flags = true);
// Show all the available options in a style that can be used in a --help
// output on the command line.
void PrintMatrixFlags(FILE *out,
const RGBMatrix::Options &defaults = RGBMatrix::Options(),
const RuntimeOptions &rt_opt = RuntimeOptions());
// Legacy version of RGBMatrix::CreateFromOptions()
inline RGBMatrix *CreateMatrixFromOptions(
const RGBMatrix::Options &options,
const RuntimeOptions &runtime_options) {
return RGBMatrix::CreateFromOptions(options, runtime_options);
}
// Legacy version of RGBMatrix::CreateFromFlags()
inline RGBMatrix *CreateMatrixFromFlags(
int *argc, char ***argv,
RGBMatrix::Options *default_options = NULL,
RuntimeOptions *default_runtime_opts = NULL,
bool remove_consumed_flags = true) {
return RGBMatrix::CreateFromFlags(argc, argv,
default_options, default_runtime_opts,
remove_consumed_flags);
}
} // end namespace rgb_matrix
#endif // RPI_RGBMATRIX_H